Iron sequestration by macrophages decreases the potential for extracellular hydroxyl radical formation.

نویسندگان

  • O Olakanmi
  • S E McGowan
  • M B Hayek
  • B E Britigan
چکیده

Alveolar macrophages (AM) from smokers contain a much higher quantity of intracellular iron than AM from nonsmokers. Since some forms of iron will catalyze the formation of hydroxyl radical (.OH) from superoxide and hydrogen peroxide, the ability of AM derived from smokers and nonsmokers to generate .OH was assessed. No detectable .OH was produced by AM from either source, suggesting that iron sequestration by AM may limit the potential for .OH-mediated lung injury. Consistent with this hypothesis, the ability of bronchoalveolar lavage fluid (BAL) from smokers and nonsmokers to act as an .OH catalyst decreased after exposure to AM. We found that, like AM, human monocyte-derived macrophages (MDM) have the ability to acquire large quantities of iron from small low molecular weight iron chelates as well as decrease the ability of BAL to act as a .OH catalyst. When MDM or AM were exposed to the iron chelates or BAL they were then able to generate .OH after phorbol myristate acetate stimulation. However, when acutely iron-loaded or BAL-exposed MDM were placed in culture, their ability to produce .OH decreased with time to the level of non-iron-exposed controls. This process correlated with iron translocation from the plasma membrane to the cytosol as well as a 3-9-fold increase in cellular ferritin. No increase in antioxidant enzyme levels or induction of the heat shock response was observed. Iron sequestration by macrophages may protect nearby cells from exposure to potentially cytotoxic iron-catalyzed oxidants such as .OH.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of Alpha-Tocopherol, Ascorbic Acid, Citric Acidand EDTA as Oxidants in Model Systems

The effects of four widely employed “antioxidants” on iron-mediated hydroxyl radical formation and lipid peroxidation were studied in aqueous model systems. Iron and copper served as catalysts for the reactions which oxidized ascorbic acid and alpha-tocopherol and reduced oxygen. Ferrous ion spontaneously reduced oxygen to 0; (superoxide anion radical) which led to .OH (hydroxyl radical) and Hz...

متن کامل

Dietary phytate lowers K-ras mutational frequency, decreases DNA-adduct and hydroxyl radical formation in azoxymethane-induced colon cancer

Objective(s): Dietary phytate is known to protect against azoxymethane (AOM)-induced preneoplastic lesions.  The present study was designed to determine whether dietary phytate affects mutation frequency in colon epithelial cells challenged with azoxymethane in vivo, through lowering the formation of O6-methyl guanosine (O6-MeG) and 8-hydroxy deoxyguanosine (8-OHdG) ad...

متن کامل

Fate of oxygen free radicals in extracellular fluids.

1. Oxygen radicals in biological systems and the importance of iron Oxygen radicals can be either organic or inorganic. The organic radicals such as the peroxy (ROO') and alkoxy (RO') are those derived from complex molecules like the polyunsaturated fatty acids. The inorganic oxygen radicals are the superoxide radical (O,-*) and the hydroxyl radical (OH'). Formation of the highly reactive hydro...

متن کامل

Formation of hydroxyl radicals in the presence of ferritin and haemosiderin. Is haemosiderin formation a biological protective mechanism?

Horse spleen and human spleen ferritins increase the formation of hydroxyl radicals (OH) at both pH 4.5 and pH 7.4 in reaction mixtures containing ascorbic acid and H2O2. The generation of OH is inhibited by the chelator desferrioxamine. Human spleen haemosiderin also accelerates OH generation in identical reaction mixtures, but is far less effective (on a unit iron basis) than ferritin under a...

متن کامل

The role of labile iron pool in cardiovascular diseases.

Although multiple factors are associated with cardiovascular pathology, there is now an impressive body of evidence that free radicals and nonradical oxidants might cause a number of cardiovascular dysfunctions. Both direct damage to cellular components and/or oxidation of extracellular biomolecules, e.g. LDL, might be involved in the aetiology of cardiovascular diseases. The key molecules in t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 91 3  شماره 

صفحات  -

تاریخ انتشار 1993